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Abstract 
Controlled gun impact and high-resolution velocity interferometery has been used to investigate a wide 
range of dynamic strength and equation-of-state properties of concrete. Principal Hugoniot, compression 
and release isentrope, and compression and tensile strength properties has been measured. The present 
report s u d z e s  key findings and provides a database of velocity profile measurements. (Report and 
papers that address in more detail the material response issues are provided in the references.) 
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Executive Summary 

1 .O Introduction 
Planar impact experiments provide the backbone data for the development of dynamic material response 
models used in computational simulation and engineering analysis of the high velocity interaction of 
materials and structures. While such techniques do not exhaustively examine the stress-strain-time states 
achieved in high velocity impact events, they do target the high-confining-stress and high-strain-rate 
deformation characteristics of such interactions. In addition, the technology of planar impact, material 
response studies, and the concomitant high-resolution diagnostics of such technology have achieved 
maturity not available in other dynamic test methods. 

Over the past several years, the DOD/DOE MOU effort at Sandia National Laboratories has actively 
pursued a study of the dynamic mechanical and equation-of-state properties of concrete through 
controlled launch impact experiments. A large number of experiments have been completed under a range 
of material and impact loading conditions. As these data unfold, the critical material response features are 
emerging, and results are impacting the development of constitutive models for concrete. High-resolution 
wave profile measurements have been provided exclusively by time-resolved interferometry (VISAR) 
diagnostics. Through novel implementation of such experiments, the critical features concerning dynamic 
compressibility, strength, flow, and fracture are being explored. Some unique examples of important 
effects revealed through shock profile studies on concrete materials include: 

The features noted above and other physical features of concrete materials being extracted from wave- 
profile measurements are providing both insights into dynamic response and critical data for constitutive 
model development. Reports and papers that address in more detail the material response issues outlined 
above are provided in the references. 

It is not the intention of the authors to explore the very rich dynamic properties of concrete materials, as 
revealed by shock wave experiments. Rather, we seek to document the extensive database of wave profile 
measurements, which have been made on concrete materials, and to make this data available for the 
development of material response models and the validation of predictive computational codes. 

This report is organized as follows: After this introduction, the next section discusses, in some detail, the 
experimental impact procedures and the VISAR diagnostic methods used to acquire the wave profile data. 
Major sections in which specific features of the dynamic response of concrete are reported follow this. 
Since differing techniques were used to measure each feature, a description of the experimental method, 
and materials involved, is included in each major section. 

Hugoniot properties that are bi-linear in their shock-velocity-versus-particle-velocity transition from 
pore and lattice crushing to equation-of-state dominated compliance with increasing pressure. 
Irreversible void and cementations lattice collapse with Hugoniot pressure that governs character of 
decompression release paths in concrete. 
A dilatancy behavior observed in release curves from higher pressures theorized to reflect crystalline 
elastic anisotropy during decompression. 
Finite dynamic compression and spall strength. 
Effects of aggregate size scale in the shock and release response of concrete. 
Effects of aggregate size scale in the shock and spall response of concrete. 



2.0 Experimental Methods 
Controlled planar impact experiments were used in all cases to obtain the wave-profile data provided in 
this report. Variations in both impact geometry and in ancillary impact, materials were often used to 
achieve specific loading conditions or to enhance profile features characteristics of particular deformation 
properties of the target material. Uniaxial-strain, compressive shock, and release waves were produced in 
the concrete test samples. The launchers used were a single-stage compressed air gun or a powder gun. In 
particular, an 89 mm (inner-bore diameter), smoothbore, powder gun with a velocity range of 0.4-2.4 
km/s was used for the largest portion of the shock-wave tests presented in this report. 

Three electrical self-shorting pins were used to measure the velocity of the projectile at impact. Accuracy 
of the velocity measurement for these experiments was typically .2 % or better. Four similar pins were 
mounted flush to the impact plane and were used to monitor the planarity of impact. These pins were also 
used to trigger diagnostic equipment, including transient digitizers and counters. Deviations from 
planarity at impact were typically about radians. 

Specific target configurations are shown in the subsequent sections. Either a disc of the concrete being 
tested or another material of known shock properties is mounted on the projectile, and it is typically 
backed by (and sometimes preceded by) a lower shock impedance material. To provide an impact surface 
for the shorting pins within the impact plane when the impactor is less than full projectile diameter, an 
aluminum ring that encircles the impactor was used. 

In one configuration, a disc of the concrete was mounted in a stationary supporting target fixture. An 
optical-quality disc of transparent window material was intimately bonded, with epoxy, to the hack of this 
concrete sample. All critical surfaces were lapped and polished, and they were typically flat to within a 
few bands of sodium light. The bonding surface of the window material was f is t  lightly diffused, and 
then plated by vapor-deposition with about 100 nm of aluminum. The epoxy bond between the concrete 
sample and the window was typically 10 to 20 nm. 

In another very effective technique, a thin disc of metal (typically aluminum or copper) was mounted in 
the target and provided a stationary medium that introduced an impact shock into the projectile concrete. 

Using laser velocity interferometry techniques (VISAR Barker and Hollenbach, 1972), the shock wave 
behavior was measured by monitoring the time-resolved longitudinal motion at the center of the target 
disc either at a free surface or at the interface between the target and the window material. Typically, the 
illuminated spot size of the incoming laser beam was 50 to 100 pm in diameter. Transient digitizers (with 
a sample period of 0.742 ns per point) were used to record the measurements. Polymethyl-methacrylate 
(PMMA) was the window material of choice when used. The interference fringes measured by the 
VISAR system were converted to time-resolved histories of the velocity of the interface using the method 
originally developed by Barker and Hollenbach (1972). Amplitude resolution was approximately 2% for 
one fringe. Typically, two to three fringes were achieved in the interface acceleration through the 
compressive shock front. Occasionally, shock jumps exceed the frequency response of the VISAR 
instrumentation, and the fringes corresponding to the velocity change are not recorded. These points are 
easily recognized by contrast dips in the VISAR reduction process. Integral fringes (typically one or two 
fringes) are added at these points to accommodate missing jumps in velocity. The required, approximate, 
amplitude of the missing velocity jump must be determined from other experimental and physical 
constraints. The high-resolution motion histories monitored by the VISAR instrumentation are frequently 
only indirectly related to the intrinsic concrete dynamic properties sought. Consequently, numerical 
simulations are commonly used to complement the data reduction process. More specific experimental 
details will he provided in the subsequent sections. 



Impact Compression Properties of Concrete 

1 .O Introduction 
Controlled impact experiments have been performed on concrete to determine dynamic material 
properties. The properties assessed include the high-strain rate-yield strength (Hugoniot elastic limit), 
and details of the inelastic dynamic stress versus strain response of the concrete. The latter features entail 
the initial void-collapse modules, the high-stress limiting void collapse strain, and the stress amplitude 
dependence of the deformational wave, which loads the concrete from the elastic limit to the maximum 
dynamic stress state. Dynamic stress versus strain data are reported over the stress range of the data, from 
the Hugoniot elastic limit to, in excess of, 4 GPa. 

In this study, controlled impact experiments were performed which were intended to reveal the response 
of concrete to transient loading conditions, and to provide a base of dynamic compression and strength 
data for developing constitutive response models. Specifically, a smoothbore gas gun was used to 
perform planar impact experiments on concrete. A maximum velocity of 2.2 k d s  constrained the range 
of impact test data to below approximately 4.0 Gpa compressive stress. Within this stress range, 
statistically significant data describing the dynamic strength, compressibility and deformational wave 
speed of aggregate concrete were obtained. 

Further discussion and analysis of this data can be found in Grady (1993a, 1993b). 

2.0 Material Description 
Concrete tested in the present study (SAC-5 concrete) was prepared and supplied by the Army Waterways 
Experimental Station (WES) (Ergott, 1993). A 15-cm by 30-cm core of concrete obtained from a larger 
body of material was machined to precise cylindrical dimensions. Density and ultrasonic measurements 
were performed on the cylinder before further machining to impact specimen dimensions was performed. 
Bulk densities of 2263 kg/m3, and a longitudinal and shear elastic wave velocity of 4.45 k d s  and 2.68 
k d s ,  respectively, were determined. Ultrasonic measurements both along and across the cylindrical axis 
indicated isotropic elastic behavior. Density and ultrasonic properties are in good agreement with 
independent measurements at WES (Egrott, 1992). A crystal density of about 2550-2680 kg/m3 and free 
water content of 4.14.8% by weight are reported for this concrete (Ergott, 1992). 

3.0 Experimental Method - Reverse Ballistic Configuration 
Impact experiments were performed with a single-stage light-gas gun of 100 mm inner-bore diameter 
capable of achieving controlled velocities over a range of approximately 50 d s  to 1 k d s .  Higher- 
pressure experiments were performed using an 89 mm powder gun capable of impact velocities to 2.4 
k d s .  A reverse ballistic configuration was created (Grady and Furnish, 1988) using a disc-shaped 
specimen of the test concrete mounted in the projectile that underwent planar impact with a stationary 
diagnostic target. The principal component of the stationary target was a large poly-methyl methacrylate 
(PMMA) disc with an interior-reflecting interface (vapor-deposited aluminum). A diffused laser velocity 
interferometer (Barker and Hollenbach, 1972) was used to measure the time-resolved motion as shock 
waves caused by the planar impact traversed the recording interface. The impact experimental 
configuration is illustrated in Figure 1. 

This configuration was used in this study because the method effectively averages the measured dynamic 
compression state over a sensibly large volume of the test sample. This feature is attractive in 
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heterogeneous samples such as the present aggregate concrete. A representative VISAR measurement of 
the interface velocity profile is illustrated in the first velocity profile. The initial velocity amplitude 
reflects only the impact of the projectile and target PMMA buffer plates. The second velocity amplitude is 
determined by the dynamic compression properties of the concrete. However, release waves from this 
interface do not reach the recording interface before the VISAR recording time is exceeded. Pertinent 
experimental dimensions are provided in Table 1 and with each profile. The concrete discs were 
approximately 10 cm in diameter. The target buffer and window assemblies were approximately 15 cm in 
diameter. 

\ 

Figure 1. Experimental configuration for compression studies of concrete. 

Table 1. Summary of compression experiments 



4.0 Results for Velocity Profiles 
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Figure 2. Shot Number: JC1 
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Shot Number: JC3 Impact Velocity: 0.596 km/s 
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Figure 4. Shot Number: JC3 
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Figure 5. Shot NumberX4 



Shot Number: JC5 Impact Velocity: 0.892 km/s 
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Figure 6. Shot Number: JC5 



Shot Number: JC6 Impact Velocity: 0.730 km/s 
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Shot Number: JC7 
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21 
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Figure 9. Shot Number: JC8 
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Figure 10. Shot Number: JC9 
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Shot Number:JC10 Impact Velocity: 0.860 !un/s 
Concrete Density: 2239 kg/m3 
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Figure 11. Shot Number: JClO 



Shock Wave Compression Profiles of Concrete 

1 .O Introduction 
Stationary sample discs of SAC-5 concrete were impacted with thin discs of fused-silica to produce 
transmission compressive shock-wave profiles for dynamic property measurements and computational 
model validation studies (Grady, 1993~). Two experiments have been performed at impact velocities of 
0.53 and 0.72 k d s .  A dual VISAR system was used to assess statistical differences in shock profile 
characteristics. On each experiment, two VISARs measuring transmitted particle velocity profiles, at 
different lateral positions, showed statistically significant differences due to the heterogeneous structure 
of the aggregate concrete. Input stress amplitudes of approximately 2 GPa and 3 GPa, respectively, for 
the two experiments were observed to attenuate to stress levels of about 0.7 GPa and 0.9 GPa upon 
transmission through the sample thickness. Such rapid attenuation indicates substantial shock wave 
dissipation in the concrete. Compression profiles do not show an abrupt compressive yield (Hugoniot 
elastic limit). Rather, the data indicate initial yield at a very low stress level, which increased 
continuously with increasing dynamic stress. The dynamic compression curve converges continuously 
with the lower end of previous Hugoniot measurements. 

2.0 Material Description 
Tests were performed on the same SAC-5 concrete provided by Waterways Experimental Station (WES) 
(Ergott, 1993) that was described in the previous section. 

3.0 Experimental Technique 
In the projectile, fused silica, which is well characterized and remains elastic within the present range of 
impact velocities (Barker and Hollenbach, 1970), was used as the impact material. The fused silica was 
backed by low-density polyurethane foam, which provided for a release wave and followed the initial 
compression wave through the concrete sample. The concrete sample was mounted in the stationary target 
assembly. The transmitted shock and release wave profile was measured at an interface forward of a 
PMMA window 50.7 mm in diameter and behind a thin (2mm) PMMA buffer plate as shown in Figure 
12. Two VISARs were used in these experiments to sample statistical variations in the transmitted wave 
profile at different lateral positions at the recording interface. VISAR #1 (designated by A in the wave 
profiles) was focused on a point - 6.3 mm from the centerline. VISAR #2 (B in the wave profiles) was 
located - 12.7 mm from the centerline. Consequently, the two VISAR beams recorded the normal motion 
at separate points 19 mm apart. Critical experimental dimensions and impact velocities for these tests are 
provided in profile tables. 

Experiments JC-21 and JC-22 were performed at impact velocities of 0.53 and 0.72 k d s ,  respectively. 
As noted earlier, the “ A  profiles correspond to the VISAR beam focused at a point closest to the 
centerline of the target; the “B” profiles, the furthest. The spike in the data, just past 5 us for Test JC-21, 
and at about 2 us for JC-22, is a timing fiducial. Profiles are aligned so that impact occurs at the time zero 
and wave arrival times correspond to transit through the concrete samples plus the PMMA buffer (see 
Figure 12). 
Significant differences in wave arrivals at the two VISAR stations are expected due to the coarse structure 
of the nominal 3/8-inch aggregate concrete. Based on a shock velocity of 3.0 km/s at the present particle 
velocity amplitude in PMMA (Barker and Hollenbach, 1970) to account for the transit time in the 2-mm 
PMMA buffer, wave velocities for each profile were calculated. Velocities for both first arrival (foot of 
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the wave), and the wave midpoint were determined. Statistically significant differences between tests JC- 
21 and JC-22 were not observed. It is important to note that the average foot velocity is in good 
agreement with the ultrasonic longitudinal wave velocity of 4.45 km/s for SAC-5 concrete (Grady 1993a). 

The profiles provide measured VISAR motion until abrupt loss of light occurs (-10 ps) corresponding 
approximately to shock arrival at the back of the PMMA window. Note that one-dimensional (uniaxial 
strain) motion is not maintained throughout the full recording time due to the finite diameter of the 
concrete sample and PMMA window. Again, differences in A and B profiles is attributed to the 
heterogeneous nature of the concrete aggregate. 

Projectile 
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Figure 12. Experimental configuration for impact shock compression measurements of concrete. 
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4.0 Velocity Profiles 
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Figure 13. Shot Number: JC21A 
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Figure 14. Shot Number: JC21B 
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Figure 15. Shot Number: JC22A 
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Figure 16. Shot Number: JC22B 
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Shock and Release Properties of Concrete 

1 .O Introduction 
Experimental shock and adiabatic release data have been determined for concrete over a shock pressure 
range of approximately 3-25 GPa. In the experimental method a concrete sample (disc) was mounted in a 
projectile and underwent planar impact on a thin disc of metal (copper or tantalum). Subsequent 
acceleration of the metal plate is monitored with diffused-surface velocity interferometry - VISAR 
(Barker and Hollenbach, 1972). Velocity histories are determined with a VISAR analysis and 
optimization program (Crawford, 1994). A single measured acceleration history establishes both the 
initial shock compression Hugoniot state, and states on the decompression adiabat from that specific 
Hugoniot state. 

Dynamic unloading properties of concrete are not well understood. Such properties are critical to the 
impact response of concrete because of the complex compaction and uncertain void volume in the 
cementatious component of the aggregate concrete. The experiments pursued in this study offered a 
technique for measuring dynamic release properties of this complicated heterogeneous material. 
Rosenberg and Ahrens (1966), Lysne et al. (1969), and Chhabildas and Grady (1984) have reported 
previous applications of the impact-plate acceleration method. Preliminary developmental work using the 
present technique on concrete has been reported in Grady (1993~). Earlier dynamic and quasistatic 
material property data for the same materials have also been reported (Ehrgott, 1993; Olson, 1993; Grady, 
1993a,b,c). 

Following initial shock compression, subsequent acceleration histories of the metal witness plates to 
nearly 10 p recording time provide decompression data from the Hugoniot state down to near zero 
pressure. This data can be used directly to constrain computational models for concrete [Silling, 1995; 
Sinz, 19951. Analytic methods can also be used to determine dynamic pressure-versus-particle-velocity 
and pressure-versus-volume release data from the acceleration histories. Static and low-pressure shock 
data indicate substantial volume compaction in the concrete. Marked flattening of the Hugoniot 
immediately above the HEL (-0.5 GPa) before stiffening to a compressibility more characteristic of the 
solid rock component is common to the dynamic compaction of a porous material. Release paths from 
Hugoniot states in the range of 3-5 GPa indicate a 10-1 1% irrecoverable volume change consistent with 
compaction measurements under static loading. Shock compression and release measurements to 
Hugoniot states in excess of 5 GPa and up to about 25 GPa indicate a decreasing irrecoverable volume 
strain. 

There are several possible explanations for this behavior. One possibility is thermal expansion on shock 
recovery due to the extensive shock heating during the dynamic compaction event. This possibility was 
pursued and found capable of explaining about half of the recovery strain. Uncertainties concerning 
distribution of the shock dissipation energy in the heterogeneous material remains. A further mechanism 
for strain recovery during decompression from the shocked state can be traced to the anisotropic elastic 
compliance of the material. Compaction and inelastic shear during the shock compression process 
eliminates all, or most, of the initial void volume; however, dilatant void can be generated during release. 
A model of this dilatancy process indicates a recovery strain of the same order as thermal expansion. 
Together the two mechanisms are capable of explaining the anomalous recovery strain on shock 
decompression of concrete. 



2.0 Material Description 
The primary material tested in the present study was SAC-5 concrete (Ehrgott, 1993) with a nominal 
density of 2260 kg/m3. Two additional experiments reported in this work were performed on a 
conventional strength Portland cement concrete with a density of 2290 kg/m3, similar to the SAC-5 
material. Hugoniot states and release paths for the concrete showed negligible differences. Additional 
experiments were conducted to determine the Hugoniot states and release paths differentiated by 
aggregate sizes. The material description is given in the section on page 13. 

3.0 Experimental Method 
Measurement of dynamic unloading properties by conventional forward ballistic wave propagation 
experiments (Grady et al, 1977), or by reverse ballistic Hugoniot and decompression methods (Grady and 
Furnish, 1988) is made very difficult because of the extremely low shock (deformation) wave velocities 
for concrete in this regime. Another technique, referred to as the plate reverberation method, which has 
been developed in earlier studies (e.g., Chhabildas and Grady, 1984), is potentially better suited to the 
measurement of dynamic unloading properties for the present material. 

i ’  

AL nose 
Concrete \ 

I / - ToVISAR 

Velocity 
Pins 

Figure 17. Experimental configuration for shock compression and release measurements of concrete. 

The shock compression and release experiments were performed on a single stage 89 mm diameter 

experimental configuration used to determine shock compression and release properties of SAC-5 
concrete is illustrated in Figure 17. The concrete sample is mounted in the projectile as shown. A metal 
plate (disc) is mounted in a stationary target assembly and back-surface motion of the plate is measured 
by VISAR methods. In this study both copper and tantalum were used as metal plate material. Higher 
shock impedance of the tantalum results in higher Hugoniot pressures at a specified impact velocity. 
Pertinent experimental parameters for the tests are provided in Table 2 and with each profile. 

smoothbore powder gun capable of controlled impact velocities over 0.5-2.5 k d s .  The reverse ballistics I 

8 



The stress states and motion histones induced by the impact in the present experimental configuration are 
pictured as follows. The initial impact of concrete on metal causes both samples to achieve their 
Hugoniot states. The subsequent arrival and reflection of the shock wave at the back free surface of the 
metal witness plate provides the initial measured acceleration. Experimental determination of the 
Hugoniot state in the concrete is established from the amplitude of the first velocity plateau and the 
measured projectile velocity. Subsequent reverberations of the wave through the plate alternately 
decompress the plate to zero stress on the concrete unloading curve. The experimental pressures versus 
specific volume release characteristics (isentrope) of the concrete are determined from the subsequent 
motion history of the metal witness plate. Thus, the acceleration history of the metal witness plate 
contains detailed experimental information regarding the shock compression and dynamic release 
properties of the concrete material. 

Table 2. Summary of plate reverberation experiments 
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4.0 Velocity Profiles 
Shot Number:JC23 Impact Velocity: 0.523 km/s 
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Figure 18. Shot Number: JCV 
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Shot Number:JC24 Impact Velocity: OS24 km/s 
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Figure 19. Shot Number: JC24 
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Shot Number:JC25 Impact Velocity: 0.774 !ads 
Concrete Density: 2260 k@m3 

Material Thickness (mm) 

Concrete SAC5 15.2 

Target Copper 3.11 

0.5 

A 

0.4 
Y 
v 

0-l J i  I I I I 
I 1 I I 

I I 
I I 

0 1 2 3 4 5 6 7 8 
Time (usec) 

Figure 20. Shot Number: JC25 
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Shot Number:JC26 Impact Velocity: 0.775 km/s 
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Figure 21. Shot Number: JC26 
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Shot Number:CONl Impact Velocity: 2.15 km/s 
Concrete Density: 2332 kg/m’ 
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Shot Number:CON2 Impact Velocity: 2.14 ! a d s  
Concrete Density: 2325 kg/m3 
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Figure 23. Shot Number: CON2 
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Shot Number:CON3 Impact Velocity: 1.74 km/s 
Concrete Density: 2328 kg/m3 

Material Thickness (mm) 

Concrete SAC5 25.4 

Target Copper 2.33 

1.5 

A 

u) 

Y 
2 
.- E 

1 v 

0 
0 - 
U 0.5 
0 

m E n 

0 

0 1 2 3 4 5 6 7 8 
Time (usec) 

Figure 24. Shot Number: CON3 
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Figure 25. Shot Number: CON4 



Shot Number:CON5 

1.5 

Impact Velocity: 1.33 km/s 
Concrete Density: 2363 kg/m3 

Concrete 

Target 

0 1 2 3 4 5 6 7 8 
Time (usec) 

Figure 26. Shot Number: CON5 
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Figure 27. Shot Number: CON6 
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2 

A 

\ 
u) 

x E 1.5 
v 

Impact Velocity: 2.27 km/s 
Concrete Density: 2337 k&m3 

Material Thickness (mm) bu=l I Concrete I SAC5 I 
25.4 I 

Target Tantalum 1.53 

0 
0 1 2 3 4 5 6 7 8 

Time (usec) 

Figure 28. Shot Number: CON7 
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Figure 29. Shot Number: CON8 
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Figure 30. Shot Number: CON9 
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Shot Number:CONlO Impact Velocity: 1.71 km/s 
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Figure 31. Shot Number: CON10 



Shock and Release Properties of Different 
Aggregate Concretes 

1 .O Introduction 

A series of controlled impact experiments has been performed to determine the shock loading and release 
behavior of two types of concrete, differentiated by aggregate size, but, with average densities varying by 
less than 2 %. Hugoniot stress and subsequent release data was collected over a range of approximately 3 
to 25 GPa using a plate reverberation technique with VISAR interferometry. This data was compared in 
several ways to data previously collected on SAC-5 concrete, which had a different aggregate size, but, 
similar density. In one comparison, the particle velocity profiles were normalized with respect to plate 
thickness and overlaid on the same graph. Also, derived quantities such as stress and strain for both the 
Hugoniot and subsequent release states were plotted and compared. Results indicate that the average 
loading and release behavior, of the 3 types of concrete discussed here, are grouped within scatter bars 
derived from particle velocity variations that are caused by the heterogeneous character of the material. 
Therefore, it appears that concrete does not exhibit a strong dependence upon aggregate size in the 3 to 25 
GPa stress range (Hall et al., 1998, Reinhart et al., 1999). 

2.0 Material Description 
The concrete used in this study had two distinctive aggregate size distributions. The concrete referred to 
as “large aggregate” (LC in the profiles) had an ASTM aggregate size number of 57. This means that 5 % 
of the material by weight is between 25 mm and 37.5 mm, 40 % to 75 % is between 19 mm and 25 mm, 
and the balance is 4.75 mm or smaller. The concrete referred to as “small aggregate” (SC in the profiles) 
had an ASTM aggregate size number of 7. This means that 10 % of the material by weight is 12.5 mm, 30 
% to 60 % is 9.5 mm, and the balance is 4.75 mm or smaller. Cores were taken from large castings in both 
cases to ensure representative responses. Samples were obtained from each core by grinding to precise 
dimensions and measurements were made to determine the density of each sample. 

3.0 Experimental Method 
The plate reverberation technique described in the previous section was also used for this study (see 
Figure 17). Results are shown in the subsequent profiles (see Figure 32 through Figure 44). 
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4.0 Velocity Profiles 
Shot Number: LC1 Impact Velocity: 0.464 km/s 
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Figure 32. Shot Number: LCl 
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Shot Number: LC3 Impact Velocity: 1.340 km/s 
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Figure 34. Shot Number: LC3 
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Figure 35. Shot Number: LC4 
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Shot Number:LC5 On-axis Impact Velocity: 2.150 km/s 
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Figure 36. Shot Number: LC5 On-axis 
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Figure 37. Shot Number: LC5 Off-axis 
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Figure 38. Shot Number: LC7 
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Shot Number: SC2 Impact Velocity: 1.748 km/s 
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Figure 40. Shot Number: SC2 
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Shot Number: SC3 
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Figure 41. Shot Number: SC3 
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Shot Number: SC4 Impact Velocity: 2.175 km/s 
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Figure 42. Shot Number: SC4 
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Figure 44. Shot Number: SC6 
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Spall Properties of Concrete 
1 .O Introduction 
In the present experiments, two concretes with differing small-scale aggregate were tested under impact 
conditions to determine their dynamic tensile fracture (or spall) properties. Wave profiles from a suite of 
experiments using gas gun impact methods achieved compression pressures ranging from 0.08 to 0.55 
GPa that remains within the elastic or near-elastic regime. Complex wave structure was observed to 
develop in the shock transit of these heterogeneous concretes, however, definitive spall pull back profiles 
were recorded. Spall strengths in the neighborhood of 30 MPa were determined for these concretes and 
explicit-aggregate simulations of these tests with computer codes and have provided insight into the 
dynamic tensile failure characteristics of these materials (Reinhart et al., 1999). 

2.0 Material Description 
Properties pertinent to spall failures are described. The concrete compositions differ in nature of 
aggregate size. SAC-5 has pea gravel and CSPC has angular gravel with a maximum dimension of 10 
mm in both cases, constituting about 40-45% of volume fraction of the concrete, the rest grout. The 
concrete referred to as large aggregate had an American Society for Testing of Materials (ASTM) 
aggregate size number of 57. This implies that 5% of the material by weight is between 25 mm and 37.5 
mm, 40% to 75% is between 19 mm and 25 mm and the balance is 4.75 mm or smaller. The concrete 
referred to as small aggregate had an A'STM aggregate size number of 7, which means 10% of the 
material by weight is 12.5 mm, 30%-60% is 9.5 mm and the balance is 4.75 mm or smaller. Cores were 
taken from large castings in all cases to ensure representative responses. Samples were obtained from 
each core by grinding to precise dimensions, and measurements made to determine the density of each 
sample. The SAC-5 concrete has a nominal density of 2260 kg/m3 and an ultrasonic longitudinal velocity 
of 5060 d s .  The CSPC has a nominal density of 2290 kg/m3 and an ultrasonic longitudinal velocity of 
5200 d s .  The large (3/4") has a nominal density of 2352 kg/m3 and an ultrasonic longitudinal velocity of 
4938 d s ;  and the small (3/8") has a nominal density of 2346 kg/m3 and an ultrasonic longitudinal 
velocity of 4532 d s .  

3.0 Experimental Method 
Impact experiments were performed with a single-stage light-gas gun of 64-mm inner-bore diameter 
capable of achieving controlled velocities over a range of a proximately 30 m/s to 220 d s .  The 
projectile was faced with carbon foam (density = 200 kg/m ) and a flat polymethyl methacrylate (PMMA) 
impactor assembly. The PMMA impactor plates had thickness of approximately 4.5 mm and 9.5 mm and 
a diameter of 57 mm (see individual test profiles). The PMMA impacts directly onto the concrete sample, 
12.7 mm thick. A velocity interferometer system for any reflector (VISAR) was used to monitor the free 
surface velocity motion of the concrete rear surface. A thin (1Opm) aluminum foil on the rear surface of 
the concrete ensured that local surface roughness did not impair the velocity measurement, besides 
obtaining the reflected optical signals necessary for the interferometric techniques. The heterogeneous 
nature of concrete gives rise to unique dispersive velocity records whose distinctive features depend upon 
the location of the monitoring position. Nevertheless, an average shock response for the bulk behavior of 
the material can still be determined. Schematics of the experimental impact conditions are illustrated in 
Figure 45. The experimental impact conditions are shown in Table 3, as well as with each profile. Aside 
from four experiments, the rear surface of the concrete remained free. On those four experiments, the 
concrete was backed with a PMMA window to alter the magnitude of the pullback signal relative to the 
main shock amplitude, providing a complementary measure of spall strength. The measured particle 
velocity histories for the series of experiments performed in this study included CSPC, SAC-5, large 
aggregate (3/4"), and small aggregate (3/8") concrete. 

P 
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Figure 45. Concrete spall configurations. 

SHOT # Impact Particle Impactor Concrete Concrete Window 
Velocity(k Velocity Thickness Density Thickness Thickness 

d s )  ( W S )  (m) (kg/m’) (mm) (mm) 
cs1 CSPC 0.220 0.136 9.469 2292 12.743 na 
cs2 CSPC 0.107 0.068 9.431 2295 12.753 na 
cs3 CSPC 0.062 0.041 9.535 2298 12.746 na 
CS4 SAC5 0.062 0.040 9.528 2292 12.753 na 
c s 5  CSPC 0.066 0.035 4.430 223 1 12.756 na 

- 

Table 3. Summary of concrete spall experiments 



4.0 Velocity Profiles 
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Figure 47. Shot Number: CS2 

65 



Shot Number: CS3 

0.05 

A 

f 0.04 
Y 
v 

0 

Impact Velocity: 0.062 km/s 
Concrete Density: 2298 k&m3 

Material Thickness (mm) 

Concrete cspc 12.75 

Impactor PMMA 9.54 

1 , 1 , , , 1 , 1 , 1 , ~ ,  
I 1 I 1 1 I I 

0 2 4 6 8 10 12 14 16 18 
Time (usec) 

Figure 48. Shot Number: CS3 
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Figure 49. Shot Number: CS4 
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Figure 50. Shot Number: CS5 
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Figure 51. Shot Number: CS6 
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Figure 52. Shot Number: CS7 
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Figure 53. Shot Number: CS8 
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Shot Number: CS9 Impact Velocity: 0.062 km/s 
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Figure 54. Shot Number: CS9 
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Shot Number:CSlO Impact Velocity: 0.062 km/s 
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Figure 55. Shot Number: CSlO 
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Figure 56. Shot Number: CS 13 
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Figure 57. Shot Number: CS 14 
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Shot Number:CSlS Impact Velocity: 0.066 km/s 
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Figure 58. Shot Number: CS15 
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Shot Number:CS16 

Material 

Impact Velocity: 0.070 km/s 
Concrete Density: 2356 kg/m3 

Thickness (nun) 

Concrete 

Impactor 

VISAR Window 

Small Aggregate 12.71 

PMMA 4.47 

PMMA 23.86 

0.03 
>I 

0 
- n  

CI .- 
0 0.02 q 
Q) - Y  
.I 0 - 0.01 
Y 

0 
0 10 Time (usec) 5 15 

Figure 59. Shot Number: CS 16 
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Figure 60. Shot Number: CS18 
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Figure 61. Shot Number: CS1Y 
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